Algorithmic Transformation Techniques for
Efficient Exploration of Alternative Application Instances

Todor Stefanov
Leiden Institute of Advanced
Computer Science
Leiden University
The Netherlands

stefanov @liacs.nl

ABSTRACT

Following the Y-chart paradigm for designing a system. an apph-
cation and an architecture are modeled separately and mapped onto
each other in an explicit design step. Next, a performance analy-
sis for alternative application instances. architecture instances and
mappings has to be done. thereby exploring the design space of
the target system. Deriving alternative application instances is not
trivially done. Nevertheless, many instances of a single application
exist that are worth to be derived for exploration. In this paper.
we present algerithmic transformation techniques for systematic
and fast generation of alternative application instances that express
task-level concurrency hidden in an application in some degree of
explicitness. These techniques hetp a system designer to speedup
significantly the design space exploration process.

Keywords
system-level design, design space exploration, application instances,
algorithmic transformations

1. INTRODUCTION

In system-level design of emnbedded signal-processing systems, a
system designer sees the target systemn as the pair Application(s)
specification - Architecture remplate. An example of such a pair
is shown in the left part of Figure 1. The application specification
provides the functional behavior of the system. The architecture
template specifies the organization of the resources of the system
onto which the functional behavior is to be mapped. In this stage,
a designer has to make some design decisions. for exarnple, how o
partition the application into tasks, how to map the tasks onto the
architecture template, what kind of communication structure to use
in the architecture template, etc. In order to evaluate different de-
sign decisions, a system designer uses a model of the target system
and does performance analysis for alternative application instances.
architecture instances and mappings. thereby exploring the design
space of the Application - Architecture pair.

A general scheme for a design space exploration is the Y-chart

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the fult citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
CODES'02, May 6-8, 2002, Estes Park, Colorado, USA.
Copyright 2002 ACM 1-58113-542-4/02/0005...$5.00.

Bart Kienhuis
Leiden Institute of Advanced
Computer Science
Leiden Uiniversity
The Nethertands

Ed Deprettere
Leiden Institute of Advanced
Computer Science
Leiden University
The Netherlands

Application Specilication
forj= 111N,

(x(])] = Sourcet();
and
fori= 1;TK,

[vli}] = Source();
end

fori K,

enlzm-)] = Fiy (). xG)):
end
tori= 1:1:K,

[Outfi) = Sinkiy(i):
end

r Communlcation Structure l
]]
Map and Explore’
| e S O A

Architecture Template Instances of the Application

Figure 1: Alternative instances of the application have to be
generated, mapped onto the architecture template and ex-
plored in order to evaluate the performance of the Application-
Architecture pair.

paradigm [4]. Tools like SPADE [9] and ORAS [6) implement
techniques that support the Y-chart paradigm but they focus only
on the exploration of alternative architecture instances and map-
pings [8). In this paper, however, we focus on techniques that
support efficient exploration of alternative application instances in
system level design. An application instance is every pariition-
ing of an application into a composition of concurrent tasks. We
use the Kahn Process Network (KPN) model of computation [3] to
describe application instances. In the Kahn model, concurrent pro-
cesses communicate via unbounded FIFQ channels. In Figure 1.
we show a simple application and a set of altemative KPN instances
of this application (KPN_I to KPN_5), Each application instance
differs from the cthers in the degree of exploited rask-level paral-
lelism. The performance of the Application - Architecture pair can
significantly depend on the application instance. So, a system de-
signer needs support to generate and explere a set of instances of
an application in order to evalvate the performance of the system
and to choose an application partitioning that satisfies requirements
the target system has 1o meet.

In general, 2 system designer is only able to derive at most a few
alternative application instances. This is so because no systematic
way to derive an application instance, let alone alternatives, from
an application specification is known, as a result of which heuristic
and time consuming appreaches are taken in practice. Neverthe-
less. many instances of a single application exist that are worth to
be derived for exploration. We present in this paper algorithmic
transformations that we have developed and implemented in order
1o help a system designer to derive systematically and fast alterna-
tive application instances. These transformations together with an
aggressive parallel compiler called COMPAAN are encapsulated in
an Application Transformation Layer that automatically generates
a set of application instances. The transformations and the tools
presented in this paper are not generally applicable in the sense
that the application specification has to be an affine nested loop
program (NLP).

In the next section we show the position of the Applicarion Trans-
Jormation Layer in the Y-chart paradigm. In Section 3 two spe-
cific algorithmic transformations are given'. The COMPAAN tool
is briefly described in Section 4. In Section 5 we show how our
algorithmic transformations are used in practice. In section 6 we
present a number of experiments and associated results. Finally,
we discuss related work and draw conciusions in Section 7 and
Section 8, respectively.

2. APPLICATION TRANSFORMATION
LAYER

In this section, we discuss the application transformation layer in
the context of the design space exploration process. We use this
layer as an extension to the Y-chart environmen: [4). The position-

Initial Values
o1
Parameters

] f

[intermediate Mattab or C code }

Application Transfc
Layer

Figure 2: The Y-chart extended with the Appli
mation Layer.

Transfor-

!For lack of space we confine ourselves to only two such trans-
formations. We have identified and implemented other ransforma-
tions as well, e.g., plane-curting. look-ahead, loop transformations.
The approach and technique is uniform over all ransformations.

ing of the transformation layer is shown in Figure 2. We start with
an applicatior: specification written in an imperative language like
Matlab or C and we have to generate and explore a set of instances
(Kahn Process Networks) functionally equivalent to the applica-
tion. First, algorithmic transformations are applied to the appli-
cation specification. The transformations are controlied by a set
of parameters. At the beginning some initial values are assigned 1o
the parameters depending on the available resources in the architec-
ture template. With these values, the original code of the applica-
ticn is zutomatically transformed and structured in a particular way
in order to make the parallelism that is inherently available in the
application explicit or to enhance the task-leve! parallelism in the
application. Second, the transformed code is converted automati-
cally to a KPN description by an aggressive parallet compiler called
COMPAAN. Third, we use 2 Y-chart environment to map the KPN
omo an architecture tempiate and do performance analysis. The re-
sult of this performance analysis can be used to change the values
of the parameters (step 4 in Figure 2) if the system performance
is not satisfactory. Then, we repeat the procedure described above
resulting in a design space exploration of alternative instances of
the application. This is shown in Figure 2 as a feed-back arrow to
the transformation layer.

By changing the values of the parameters. the application transfor-
mation layer automatically generates a set of KPNs comesponding
to a single application. The difference among the KPNs is the de-
gree of the task-leve! parallelism that is exploited. Till the end of
this paper we describe in more detatls the techniques and tools we
have developed and incorporated in the ransformation layer.

3. ALGORITHMIC TRANSFORMATIONS
In this section. we present two algonithmic transformations, namely
Unfolding and Skewing. These wransformations take as input an
affine nested loop program (NLP) [2] and a set of parameters. The
output of the unfolding transformation is an affine nested loop pro-
gram which is functionally equivalent to the input program but
with enhanced task-level parallelism. The skewing transformation
makes the potential parallelism in the input affine nested loop pro-
gram explicit. We have developed and implemented these and other
transformations in a tool box called MATTRANSFORM. The trans-
formations in this tool box operate directly on the NLP source code
without vsing some intermediate representation like dependence
graphs, signal-flow graphs or data-flow graphs corresponding to the
NLP.

First. we explain what unfoiding and skewing mean in the context
of our zlgorithmic transformations. Next, we define the unfolding
and skewing transformations as procedures that operate on an affine
nested loop program. For convenience, in our further explanations.
we assume that affine nested loop programs (NLPs) are expressed
in Matiab code. The NLPs could also be expressed in other imper-
ative programming languages like, for example, C.

3.1 Unfolding and Skewing

Consider the application program (NLP) and its dependence graph
{DG) shown in Figure 3-a). The DG is a graphical representation of
the NLP. The nodes in the DG represent the NLP functions that are
executed in each loop iteration and the edges represent the data de-
pendencies between the functions. The NLP has two loops (with it-
erators §. £} which can be unrolled to yield the DG, Unlike common
approaches. in which either the loop control is removed through
loop unrotling [10] or the DG is folded [11]. our new approach to
get the desired degree of parallelism - at the task level - is to copy

—

or = 11K, . M ML wy -r‘w
fori = 1:1:3, wl,
L %)) = Pyl xG)):
Er!g(l] ()} = Fiyfd <)) "
end
¥y
) Apglication program {NLP) and its dependence graph
ot j= 1:1:4,
ifmod2)=1,
fori=1:%:3,
Lybid. %0 = Fiy(i), 23
)
en
f(imod2)=0,
fori=1:13,
Ty(i). 23] = Flyli), xt}):
i
En
eng
B) NLF with unfolded j-loop by factor 2
forj = 2:1:443,

fori = max(l,j—ay:1:min{j-1.3),
[y, x(j=)] = Feyfi). «f J=ip:
end
end

€) NLP with skewed i-loop

Figure 3: Simple example illustrating the unfolding and skew-
ing transformations.

a loop body a number of times in such a way that these copies are
mutually exclusive. We call this new approach wnfolding and we
have implemented it in our unfolding transformation. An example
of our unfolding is shown in Figure 3-b}. where the j-loop of the
program in Figure 3-a) is unfolded by a factor of 2. The two pieces
of code bounded by the "if” statements in Figure 3-b) are mutually
exclusive. The mutually exclusiveness can be exploited by an ag-
gressive parallel comptler to pariition the program in Figure 3-b)
into two processes (tasks) that can operate in parallel. The graph-
ical interpretation of the unfolding transformation is given by the
dependence graph in Figure 3-b). For this simple example the un-
folding transformation partitions the computational workload over
two parallel processes. The first process will execute the nodes
bounded by the dashed boxes. The second process will execute the
nodes bounded by the solid boxes. An example of the network con-
necting these two processes is shown in Figure 7 - see KPN_1. In
general, our unfolding transformation is used to partition an NLP
in IV processes. where JV is equal to the unfolding facter. The pro-
cess network corresponding to a fully unfolded NLP is equal to the
dependence graph of this NLP.

Now, consider the same application program (NLP) shown in Fig-
ure 3-a). The transformation of skewing is to create a new NLP in
which the bounds of the loops and the indexes of the variables are
changed in a particular way to make the potential parallelism in the
original NLP explicit. For example, skewing the i-loop of the pro-
gram in Figure 3-a) leads to the NLP in Figure 3-c). The effect of
our skewing transformation is visualized by the dependence graph
(DG} in Figure 3-¢). This DG explicitly shows that the nodes inside
a dashed box can be executed in paratle] because there are no data
dependences between these nodes. This property can be exploited
by an aggressive parallel compiler in combination with the unfold-
ing described above to partition the program into processes (fasks)
that run in parallel. An example of a network of such parallel pro-
cesses comesponding to the NLP in Figure 3-¢) is given in Figure 8
- see KPN_4. Moreover. inside these processes some pieces of code
can be executed in paraltlet or in a pipeline fashion because of the

1 UNFOLD(NLP, U, I {

il (f is empty set) {

5 print{ VL P);
returni{}:
}oese {
10 a = first element 6f the sec [;
b = first element of the set U:

lppp = take the ¢ode from the beginning of NLP
till the -for" statement with loop iterator a,
15 including;
body = take the body of loop a from NLP,
printdoop) -
20 for {k = 1: k <= b; kew) {
printn{ - if("+oemod +bs")=mab-ks ", ") ;
templ = the set U withour the first element;
25 temp2 = the sec [without the first element;
UNFOLD (body, templ, temp2);

println{“end" } ;

30 }
println{ “end* };
return{);

35 }

Figure 4: Pseudo code describing the UNFOLD transforma-
tion.

skewing transformation.

Note that in both cases {unfolding and skewing). the ransforma-
tions proceed along the NLP code in Figure 3. The dependence
graphs are only shown to visualize the effect of the transformations.

3.2 Unfolding procedure

Let NLF be an N-deep affine nesied loop program with an itera-
tion vector I = {41,42,.....in}. Foreachiz € T | k= 1,2, ., N
a parameter u, € N is associated. All these parameters form a
parameter vector U = {u1,uz, ..., ty } which we call unfolding
vector. We defing a wransformation UNFOLD(NLP,U,I) which is
described in Figure 4. The pseudo code in Figure 4 describes the
unfolding transformation as a recursive procedure. This precedure
operates on the affine nested loop program N LP with its iteration
vector [and the value of the unfolding vector U. In order to explain
the behavior of the procedure UNFOLD we consider the following
simple example. Let NLP be the program shown in the left part
of Figure 5. NLP has only one loop with an iterator (index) .
Hence, the iteration vector J corresponding to NLP has only one
element I = {z} and the unfolding vector-U has also one element
U = {u}. In our example the parameter u is equal to 10, Follow-
ing the procedure UNFOLD. first we check whether I is an empty
set. In our example we start with J = ¢} which is not an empty
set. Then. we initialize four variables, see lines 10, 11, 13 and 16
in Figure 4. As aresult we have: variable a takes the character "i";
variable & = 10; variabie loop takes the string " fori=1:1: N,”
and body takes the code in the body of the loop with iterator '{'.
This code is marked in Figure 5 as a rectangle. Line 18 in Figure 4
prints to the output the variable loop. The result is shown in Fig-
ure 5 - the first line in the unfolded NLP. Executing lines 20 till 32
in Figure 4 will generate the rest of the code of the unfolded NLP in

iohari= 10N,
! dgmod10)=9,

Toop body

|

end

fari= 310N, it {imod 10) =8,

end

i UNFOLD({NLP, U, 1} Joop body
[t amii s S

end

H{imodi0)a0,

end
H ond
Application program (NLP} |
U= {10}, 1=fi} i Unfolded NLP

Figure 5: Simple example illustrating the UNFOLD() transfor-
mation shown in Figure 4.

Figure 5. As aresult the unfolded NLP in Figure 5 has ten copies of
the loop body hounded by "if" statements with a "mod"” statement
making them mutually exclusive.

The example in Figure 5 shows that the input NLP is transformed to
a functionally equivalent NLP which we call an unfolded NLP. The
unfoided NLP can be easily converted into tea tasks that operate in
parallel. That is why we say that the unfolded NLP has enhanced
task-level parallelism compared with the input NLP.

3.3 Skewing procedure

Let NLP be an N-deep affine nested loop program with an itera-
tion vector I = {i1,42,....,in}. Foreachir € I |k =1,2,. .,V
a parameter vector Dy = {mi, ma,, my} is associated. where
eachm, € N|p = 1,2, .., N. All parameter vectors form a pa-
rameter matrix

M ={DT,D],...D%} =

mu mN

myy myN
which we call skewing mairix. We require M to be unimodular. We
define a transformation SKEW(NLF,M) as described below:

» STEP1 - Represent the iteration space of IV LF as a polylope
P={Ie€Z"| AI > b}, where A is an integral marrix
and b is an integral vector;

o STEP2 - Use the skewing marrix M to transform P as fol-
lows:
AM-'MI>b=> AT >b
where A =AM 'and 7 = M.T:

« STEP3 - Use the Fourier-Motzkin (FM) procedure [1] to rep-

resent the iteration space. described by AT > b, in terms

of nested loops. This is the new iteration space of N LP with
g

iteration vector I :

» STEP4 - Change all indexes of the variables in NLF ac-
cording to the equation [= M~*.T .

The four steps described above are illustrated in Figure 6 in the
context of a simple example. We start with a 2-deep affine nested

loop program and a skewing matrix M = [(1] 1] . In STEPI. the

ranges of the loop indexes j and 1 are represented as a system of
linear inequalities A.J > b. Next. we use the skewing matrix M to

10

Application program (NLP)
lor}= 1IN,
fori= 11K,
[yt XQ) = Fygi). x().
end
end

STEP1

1
-1
STEP2 (:

: -: (I'\ _'1“ . for | = 2:1:N+K,
- {Via FM 1t = ma =Ny Loming-1),
STEP3 {o 1 /W/™ s Iy,) = Fiyth. <
0-1 K end
[b #nd
forj = 2:1:NeK,
STEP4 for 7 = max(1,i'~N):1.min(f ~1 K),

[y}, x(i™~7)) = Fiy(i), =’ =T}
end
end
Skewed NLP

Figure 6: Simple example illustrating the four steps in the
SKEW(NLP,M) procedure.

do the mathematical manipulations described in STEP2. As a result
we have a new iteration space for the input NLP. defined by the loop
indexes §' and i’ and bounded by the system 4’.[7',¥']T > b.
The Fourier-Motzkin (FM) procedure is used to represent the new
iteration space as nested loops as it is shown in Figure 6 - STEP3.
After this step all variables inside the loops are still indexed by the
old indexes j and 1. We have to replace them with the new indexes
and ¢’ In order to do this we know from STEP2 that [§*,4']T =
[(1) ﬂ 5,47, which implies that [4, 7 = [; ‘11] .4
So. we have 1o replace index j with 7' — i’ and index i with i’ in all
variables. This is illustrated in Figure 6 - STEP4.

4. COMPILER

In this section, we briefly describe our aggressive parallel compiler
Comeaan which exploits the result of the transformations pre-
sented in Section 3. COMPAAN (Compilation of Matlab to Process
Netwarks) [7] is a method and tool set (MATPARSER, DGPARSER.
PanDa) for transforming affine nested loop programs (NLP) (2]
written in Matlab into a Kahn Process Network (KPN) specifica-
tion.

COMPAAN starts the transformation by converting a Matlab specifi-
cation into a single assignment code (SAC) specification. SAC de-
scribes all parallelistn available in the original Matlab specification.
The 100! which does the Matlab-to-SAC transformation is MAT-
PARSER [5]. MATPARSER is an array dataflow analysis compiler
that finds all parallelism available in NLPs written in Matlab using
a very aggressive data-dependency analysis technique. This tech-
nique is based on parametric integer linear programming. Also,
MATPARSER can handle non-linear operators fike Max, Min, Ceil,
Floor, Mod and Div. Therefore, it can handie the result of the skew-
ing and unfolding transformations presented in Section 3. Next.
a tool catled DGPARSER [2] converts the SAC description into a
Polvhedral Reduced Dependence Graph (PRDG) [7] description.
The PRDG is a compact graphical! representation of the SAC us-
ing parameterized polyhedral embeddings of the atomic functions.
Finally. the PANDA tool [7] uses the PRDG description in order to
generate the Kahn Process Network description and the individual

forj= 11N,
. * - ————— 44 I'I'\Od 2=,
en[é’(')» ()] = Flyli), xGin Transt sion: k::;;:oégﬁ .
end iAo iyt0, X0l = FUy, <0
=[ul, v2) = 22] o
Transtormatio if (i mod 2) = 0,
ormation:) = Fi i:
ontet, ag[é'("‘ x) = iyt =)
U=(o1, u]=(2,1] o
ifgmod2)=0.
forj = 1:1:N, : fori=1:1:K,
ifimod2) =1, i fimod2)=1,
fori=1:1:K, i

L), xfid) = Fy(i), xG)):
end

if (imeg 2) = 0,
Tvi). ()] = Fiyli). =)
end

Ly).)] = Fiy(ix ()
end

Conversion to KPN:
Compaan

-

Figure 7: An example of generating two possible Kahn Process
Networks from a single application using the unfolding trans-
formation and the COMPAAN tool.

processes.

5. EXAMPLES

In this section. we demonstrate the use of our algorithmic trans-
formations in combination with the COMPAAN tool set. We show
how, merely by changing the values of the parameters, a set of Kahn
Process Networks (KPN) can be easily generated from a single ap-
plication.

Consider the application shown in the top-lefi comer of Figure 7.
It is a 2-deep affine nested loop program written in Matiab. In Fig-
ure 7 first we apply the unfoiding ransformation on our application
and then we use COMPAAN to convert the transformed code into a
KPN description. We assign two different values 1o the parameter
vector U, namely U = (2, 1) and U = [2,2]. As aresult we ob-
tain two different KPNs. They have different numbers of processes
and different communication structures (see Figure 7- KPN_] and
KPN_2).

In Figure 8, we show another example in which we use the same
application as in Figure 7. We obtain KPN_3, which has only one
process, by applying the skewing transformation with a2 parameter
1
1
tion and the unfolding transformation can be applied in combina-
tion. KPN_4 in Figure 8 is derived by applying first the skewing
11
01

matrix M = é . Also, we show that the skewing transforma-

transformation with Mf = and then the unfolding transfor-

mation with I/ = [2,1].

6. EXPERIMENTS AND RESULTS

In this section, we present some of the experiments we have done in
order to evaluate and show the usefulness of the algorithmic trans-
formation techniques presented in this paper. We built a Y-chart
environment extended with the Application Transformation Layer
as shown in Figure 2. As an input application for the ransforma-
tion layer we used the QR-decomposition algorithm {12] because it

"

horj= 20 N+K,
it fmod 2) = 1,
for i = max(1,j~Nj:1:min{j- 1K),
e.“[c);(il- *{i-i = Fly(d, x(-0};

Transtormation:
Skew(M) + Unfald(U),

ua (T) <o 2

o
Teanstormation: U=ul, u3] ={2,1)
Skaw(M), 'rf(jfhodZ)-o,
we M1 m2y 1 for i = max(1.j-Ny:1minfj-4.K),
Timz1 m22/ "0y, E"[l_;f(d. {01 = Fiyli), xli=i):
end
forj= 2:1:N+X, end
fori = max(! ‘1~N)L1:min('r?1.K],
l"_'[5'(1), x(j=i)] = Fiy(, x{-i): Conversion to KPN:
end Campasn
Conversion to KPN:
- =
KPN_3 KPN_4

Figure 8: An example of generating two possible Kahn Process
Networks from a single application using the skewing and un-
Jolding transformations and the COMPAAN tool.

is common computational intensive task in many signal processing
applications like Digital Beamforming, Adaptive Digital Filtering
etc. The algorithm was written in Matlab. The application trans-
formation layer applies the Unfolding and Skewing transformations
on the QR algorithm and generates altemative application instances
- Process Networks - as synthesizable VHDL. We mapped these
instances onto a Xilinx XCV1000E FPGA device which was the
architecture template for our experiments. The mapping was done
by a synthesizer and place-and-route tools provided by Xilinx. The
performance analysis was done using the timing analysis and sim-
ulatien tools from the Xilinx Foundation” package.

Figure 9 shows the estimated total execution time for three applica-
tion instances of the QR-decomposition algorithin. These instances
were derived automaticaliy by applying the transformation tech-
niques presented in Section 3. The results show that the effect of

Skewing + - |
A

g

Unfolding [E3 RSt ore
Notranstorm [ESE R s g

[] 2 4 6] 10
Time { micro seconds)

Figure 9: Execution titne of the QR algorithm transformed by
using the unfolding and skewing transformations, The unfold-
ing factor is 3 and the size of the input data matrix is 10 by
6.

applying our transformations is that we ¢an generate aliernative ap-
plication instances with different performance when mapping them
onto an architecture template (in our case an FPGA). It can be seen
from Figure 9 that the unfolding and skewing transformations im-
prove significantly the performance.

Figure 10 shows the results obtained from the exploration of the
performance of ten application instances of the QR algorithm de-
rived by applying only the unfolding transformation with unfolding
factors from 1 to 10. Again, the results show that the performance
can be significantly improved. In this experiment we also mea-
sured how much time it takes to obtain the results presented in Fig-
ure 10. The time taken for these ten experiments to be processed

humber of cy<les
8

i

3508 | 495 § 3696 3671, 3008,

unfolding fector

Figure 10: Exploration of the performance of the QR algorithm
unfolded by factors from 1 to 10. The size of the input data
matrix is 48 by 16.

automatically from Matlab to a hardware mapping onto an FPGA
and VHDL simulation was within 8 hours. Tabie | shows the pro-
cessing times for some of the experiments in more details, The
second row “Transform+Compile” shows the processing times for
our tools MATTRANSFORM and COMPAAN- step 1 and step 2 in
Figure 2. The row "Mapping+Simulation” gives the time needed
10 express the Process Networks in terms of a synthesizable VHDL
code. to map this VHDL code on an FPGA and finally to obtain
performance numbers from VHDL simulation - step 3 in Figure 2.

Table 1: Processing Times (hh:mm:ss).

Unfold 2 | Unfold 5 | Unfold 10
Transform+Compile | 00:00:08 | 00:00:18 | 00:00:29
Mapping+Simulation | 00:22:54 | 01:24:44 | (4:47:30
Total 00:23:02 { 01:25:02 | 04:47:59

The last row of Table 1 suggests that an extensive design space
exploration of altemnative application instances can be done in a
relatively short amount of time. Moreover, the accuracy of the re-
sults obtained during the exploration is within 3%, because we did
very detailed VHDL cycle accurate simulation. The results given in
the second row of Table I show that the application transformation
layer presented in Section 2 generates very fast alternative appli-
cation instances from a given application. The time to do this is
only a few seconds, whereas the time to map the instances onto an
FPGA and simulate them varies form minutes to hours - see row 3
of Table 1. However. there is a potential to improve the mapping
and simulation time {row 3 of Table 1) by using some system-level
design space exploration tools like SPADE [9] and ORAS [6]. Pre-
liminary results indicate that the mapping and simulation time can
be reduced to a few minutes instead of several hours obtaining per-
formance numbers with reasonable accuracy.

7. RELATED WORK

The Unfoiding and Skewing transformations presented in this pa-
per are related to the unfolding and retiming transformation tech-
niques used in the Signal-Processing community [11]. Also, they
are related to the loop unrolling and loop skewing techniques used
in compifer design [10]. However, there are some important dif-
ferences. First. we use our transformations for generating a set
of Kahn Process Networks corresponding to an application (nested
loop program) thereby generating alternative application instances.
Using the Unfolding transformation to generate Process Networks
we do reverse partitioning compared to {13). We start by putting all
computational workload in one process and by uafolding we par-
tition the workioad over more processes. Second. we developed

12

procedures to do these transformations en the algorithmic (source
code) level, whereas in {11] similar transformations are applied on
signal-flow graphs. data-flow graphs or dependence graphs corre-
sponding to an algorithm. Third. our transformations aim at expos-
ing and exploiting the task-level parallelism available in an appli-
cation, whereas the transformations in [10] aim at exploiting the
fine-grain instruction-level parallelism.

8. CONCLUSIONS

In this paper, we presented algerithmic transformation techniques
for deriving a set of application instances (Kahn Process Networks)
comresponding to an application. These techniques support a sys-
tem designer in exploring alternative instances of an application
mapped onto an architecture template. We have implemented our
techniques in the t00ls MATTRANSFORM and COMPAAN which
means that the process of deriving alternative instances is fully au-
tomated for applications described as affine nested loop programs.
Therefore. the presented techniques help a system designer 10 speedup
significantly the process of exploring alternative application instances
in systemn level design. Qur expenments and resuits show that an
extensive design space exploration of alternative application in-
stances can be done in a relatively short amount of time with ac-
curacy of the results within 5%.

9. REFERENCES
[1] €. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In
Proc. ACM SIGPLAN'9], pages 39-50. June 199%.
[2] P Held. Functional Design of Data-Flow Networks. 1996. PhD
thesis. Delft University of Technology. The Netherlands.

G. Kahn. The semantics of a simpie language for parallel
programming. In Proc. of the IFIP Congress 74. North-Holland
Publishing Co.. 1974,

B. Kienhuis. Design Space Exploration of Stream-based Dataftow
Architectures: Methods and Tools, Jan. 1999. PhD thesis, Delft
University of Technology. The Netherlands.

B. Kienhuis. MatParser: An array dataflow analysis compiler.
Technical repert. University of California at Berkeley. 2000.
UCB/ERL MOO/9.

B. Kienhuis. E. Deprettere. K. Vissers. and P. van der Wolf. The
Construction of 2 Retargerable Simulator for an Azchitecture
Template. In Proc. 6-th Int. Workshop on Hardware/Sofrware
Codesign (CODES’98). Seattle, Washington, Mar. 15-18 1998,

B. Kienhuis, E. Rijpkema. and E. F. Deprattere. Compaan: Deriving
Process Networks from Matlab for Embedded Signal Processing
Architectures. In Prov. 8th Iniernational Workshop on
Hardware/Software Codesign (CODES'2000). San Diego, CA. USA.
May 3-5 2000.

P. Lieverse. T. Stefanov. P. van der Wolf. and E. Deprettere. System
Level Design with SPADE: an M-JPEG Case Study. In Proc. far.
Conference on Computer Aided Design (ICCAD'0!), pages 31-38,
San Jose CA. USA, Nov. 4-8 2001.

P. Lieverse. P. van der Wolf. K. Vissers, and E. Deprenere. A
Methodology for Architecrure Exploration of Heterogeneous Signal
Processing Systems. I, Journal of VLSI Signal Processing for
Signal, Image and Video Technology. 29(3):197-207, 2001.

S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers. Inc.. 1997.

K. Parhi. VLS! Digital Signal Processing Systems: Design and
Implementation. John Wiley & Sons. Inc.. 1999,

1. Proakis. C. Rader, F. Ling. C. Nikias. M, Moonen. and I. Proudler.
Algorithms for Statistical Signal Processing. Prentice Hall. Inc..
2002.

3. Teich and L. Thiele. Exact Partitioning of Affine Dependence
Algorithms. Lecture Notes in Computer Science (LNCS), Springer.
2268:133-151, 2002.

3

(4]

15}

16

(7

(8]

9

10)
]

[12]

(13

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

